All Academic, Inc. Research Logo

Info/CitationFAQResearchAll Academic Inc.
Document

Imprisoned Imperceptions: Inaccuracy in Incarceration Demographic Stereotypes
Unformatted Document Text:  Incarceration Beliefs There was one result demonstrating that people’s estimates of the U.S. population currently incarcerated were wildly inaccurate: although only .76% of the U.S. population is incarcerated, the average estimate of the participants was 22.09%. People erroneously estimated that over 1/5 th of the U.S. population is in jail. Such a drastic overestimate is consistent with evidence that people tend to overestimate the probability of low-probability events (Fischhoff et al., 1981). Assessing consensual-level stereotype accuracy: Absolute discrepancies. Raw discrepancies simply average people’s discrepancies. This is very useful for assessing systematic biases (such as exaggeration or underestimation of real differences) but may overestimate accuracy. This is because errors in opposite directions cancel out (if Fred overestimates the proportion of women by 30 percentage points and Lois underestimates by 30 percentage points, on average there is no bias and they are perfectly accurate). Absolute discrepancies are assessed in such a manner that each participant’s degree of inaccuracy is fully maintained and is not lost by averaging discrepancies with opposite signs (e.g., discrepancies of +30 and -30 average to zero). Specifically, absolute discrepancies are calculated by obtaining the absolute value of each participant’s discrepancy score, and then calculating the simple arithmetic average of those absolute values. As such, these calculations reflect how far off people are, ignoring the direction of their discrepancy (for example, the average absolute discrepancy for Fred, who overestimates the proportion of women by 20 percentage points and May, who underestimates it by 10 percentage points, would be 15 percentage points). This value is the average discrepancy at the individual level. Table 3 presents consensual stereotype discrepancies based on absolute discrepancies between beliefs and criteria. Column 4 presents the absolute discrepancy between the actual proportion of the social group in the prison population (Column 2) and participants’ average estimates of these proportions (Column 3). All of the single-sample t-tests were significant at the p<.001 level, 15

Authors: Ragusa, Laura.
first   previous   Page 15 of 38   next   last



background image
Incarceration Beliefs
There was one result demonstrating that people’s estimates of the U.S. population currently 
incarcerated were wildly inaccurate: although only .76% of the U.S. population is incarcerated, the 
average estimate of the participants was 22.09%. People erroneously estimated that over 1/5
th
 of the 
U.S. population is in jail. Such a drastic overestimate is consistent with evidence that people tend to 
overestimate the probability of low-probability events (Fischhoff et al., 1981).  
Assessing consensual-level stereotype accuracy: Absolute discrepancies. Raw discrepancies 
simply average people’s discrepancies.  This is very useful for assessing systematic biases (such as 
exaggeration or underestimation of real differences) but may overestimate accuracy.  This is because 
errors in opposite directions cancel out (if Fred overestimates the proportion of women by 30 
percentage points and Lois underestimates by 30 percentage points, on average there is no bias and 
they are perfectly accurate).  
Absolute discrepancies are assessed in such a manner that each participant’s degree of 
inaccuracy is fully maintained and is not lost by averaging discrepancies with opposite signs (e.g., 
discrepancies of +30 and -30 average to zero).  Specifically, absolute discrepancies are calculated by 
obtaining the absolute value of each participant’s discrepancy score, and then calculating the simple 
arithmetic average of those absolute values.  As such, these calculations reflect how far off people 
are, ignoring the direction of their discrepancy (for example, the average absolute discrepancy for 
Fred, who overestimates the proportion of women by 20 percentage points and May, who 
underestimates it by 10 percentage points, would be 15 percentage points).  This value is the average 
discrepancy at the individual level. 
Table 3 presents consensual stereotype discrepancies based on absolute discrepancies between 
beliefs and criteria. Column 4 presents the absolute discrepancy between the actual proportion of the 
social group in the prison population (Column 2) and participants’ average estimates of these 
proportions (Column 3).  All of the single-sample t-tests were significant at the p<.001 level, 
15


Convention
Need a solution for abstract management? All Academic can help! Contact us today to find out how our system can help your annual meeting.
Submission - Custom fields, multiple submission types, tracks, audio visual, multiple upload formats, automatic conversion to pdf.
Review - Peer Review, Bulk reviewer assignment, bulk emails, ranking, z-score statistics, and multiple worksheets!
Reports - Many standard and custom reports generated while you wait. Print programs with participant indexes, event grids, and more!
Scheduling - Flexible and convenient grid scheduling within rooms and buildings. Conflict checking and advanced filtering.
Communication - Bulk email tools to help your administrators send reminders and responses. Use form letters, a message center, and much more!
Management - Search tools, duplicate people management, editing tools, submission transfers, many tools to manage a variety of conference management headaches!
Click here for more information.

first   previous   Page 15 of 38   next   last

©2012 All Academic, Inc.